Testing the APT with the Maximum Sharpe Ratio of Extracted Factors - Erratum

Chu Zhang*

August, 2009

*Hong Kong University of Science and Technology (HKUST), Email: czhang@ust.hk, Tel: (852) 2358-7684. The note is an erratum of errors/typos in the paper "Testing the APT with the Maximum Sharpe Ratio of Extracted Factors," published in *Management Science* 55, pp1255-1266 in 2009.

1. Error

In the Arbitrage Pricing Theory (APT) literature, the return-generating processes are usually stated in two ways. The first is to write

$$r_t = a + Bf_t + \varepsilon_t,\tag{1}$$

where r_t is the *n*-vector of returns in excess of the riskfree rate over period t, f_t is the *k*-vector of systematic factors over t, $E\varepsilon_t = 0$ and $Ef_t\varepsilon'_t = 0$. If f_t is chosen as excess returns on factor-mimicking portfolio, then $Ef_t \equiv \mu_f$ is the factor premium, $\mu \equiv Er_t = a + B\mu_f$, and a is vector of pricing errors associated with f_t relative to the exact version of the APT: $\mu = B\mu_f$. It is important to note that B'a = 0 as assumed in the APT. The second way is to write

$$r_t = \mu + B\tilde{f}_t + \varepsilon_t,\tag{2}$$

where $E\tilde{f}_t = 0$, $E\varepsilon_t = 0$ and $E\tilde{f}_t\varepsilon'_t = 0$. The two expressions are equivalent with $\tilde{f}_t = f_t - \mu_f$ and $\mu = a + B\mu_f$.

Let $S_r = Er_t r'_t$, $S_f = Ef_t f'_t$, $S_{\tilde{f}} = E\tilde{f}_t \tilde{f}'_t$ and $\Sigma_{\varepsilon} = E\varepsilon_t \varepsilon'_t$ be the second moment matrices of the corresponding variables. Then from the two expressions of returns,

$$S_r = aa' + BS_f B' + \Sigma_{\varepsilon} + a\mu'_f B' + B\mu_f a'$$
(3)

$$= \mu \mu' + BS_{\tilde{f}}B' + \Sigma_{\varepsilon}. \tag{4}$$

The published paper uses (1), However, Equation (2) in the paper mixes up the two expressions of S_r above by writing $S_r = aa' + BS_f B' + \Sigma_{\varepsilon}$, which is wrong for any finite *n*. The correct equation is (3) here.

The error does not affect the validity of the rest of the paper, however. Only the proof of Proposition 1 should be revised. Rewrite $S_r = aa' + B_g B'_g + \Sigma_{\varepsilon} + a\mu'_g B'_g + B_g \mu_g a'$ where $B_g = BS_f^{1/2}$ and $\mu_g = S_f^{-1/2} \mu_f$. Since by definition, Σ_{ε} has bounded eigenvalues, the number of unbounded eigenvalues of S_r is the same as the number of unbounded eigenvalues of $S = aa' + B_g B'_g + a\mu'_g B'_g + B_g \mu_g a'$. It can be shown that the k + 1 positive eigenvalues of S satisfy the following equation

$$\alpha + \sum_{j=1}^{k} \alpha \mu_j^2 \frac{\beta_j}{\lambda - \beta_j} = \lambda, \tag{5}$$

where $\alpha = a'a, \beta_1 \geq \beta_2 \geq \cdots \geq \beta_k > 0$ are the positive eigenvalues of BB', and $\mu_g = (\mu_1, \cdots, \mu_k)'$. If $\beta_1, \cdots, \beta_k, \alpha$ all tend to infinity, it's easy to see that any solution to (5) tend to infinity. If β_1, \cdots, β_k tend to infinity, but $\alpha \to \overline{\alpha} < \infty$ (or remains bounded), then it can be verified that in the limit, $\lambda/\beta_j \to 1$ for $j = 1, \cdots, k$ for the k largest eigenvalues and $\lambda \to \overline{\alpha}(1 - \mu'_g \mu_g) > 0$, which is finite, (or remain bounded) for the smallest positive eigenvalue.

2. Typo

There is a typo in the proof of Proposition 2 (iii). It is a typo made by the publisher, which the author missed in the galley proof. In the published paper,

... It follows that, in the limit when n goes to infinity, the maximum squared Sharpe ratio is

$$s = \lim_{n \to \infty} \mu'_r \Sigma_r^{-1} \mu_r = \lim_{n \to \infty} (a + B_g \mu_g)' (B_g \Sigma_g B'_g + \Sigma_{\varepsilon})^{-1} (a + B_g \mu_g)$$

$$= \lim_{n \to \infty} (B_g \mu_g)' (B_g \Sigma_g B'_g)^+ (B_g \mu_g) = \mu'_g \Sigma_g^{-1} \mu_g = \mu'_g (I_k - \mu_g \mu'_g)^{-1} \mu_g$$

$$= \mu'_g [I_k + \mu_g \mu'_g / (1 + \mu'_g \mu_g)] \mu_g = \gamma / (1 - \gamma),$$

where ...

The typo occurs in the last line of the formulas, which should be

$$= \mu'_g [I_k + \mu_g \mu'_g / (1 - \mu'_g \mu_g)] \mu_g = \gamma / (1 - \gamma).$$